OMA-AML-1: a leukemic myeloid cell line with CD34+ progenitor and CD15+ spontaneously differentiating cell compartments.
نویسندگان
چکیده
OMA-AML-1 was established from a patient with acute myelomonocytic (M4) leukemia at fifth relapse when blasts were greater than 85% CD34+, CD15-. Leukemic cells were established in suspension culture and independently grown as subcutaneous tumors in SCID mice. Cells growing in suspension culture underwent differentiation by phenotypic and morphologic criteria. In contrast, cells grown as subcutaneous solid tumors in SCID mice maintained progenitor cell characteristics with high-density CD34 expression and lack of morphologic differentiation. A tendency toward differentiation to CD15+, CD34- cells in vitro and self-renewal of CD34+, CD15- cells in vivo was consistently demonstrated regardless of whether cells were initially grown in vitro or in vivo. The cell line maintains both a CD34+, CD15- progentitor cell pool and a non-overlapping, CD15+, CD34- differentiating cell compartment after more than 1 year in continuous culture. Cell cycle analysis and cloning experiments were consistent with terminal differentiation occurring in the CD15+, CD34- population. The cell line shows concentration-dependent proliferative responses to interleukin (IL)-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-6, but not to granulocyte CSF (G-CSF). OMA-AML-1 appears to mimic several features of normal myeloid hematopoiesis and should prove useful for the study of normal and malignant myeloid differentiation.
منابع مشابه
Characterization of a hierarchy in human acute myeloid leukemia progenitor cells.
Despite the usual uniform and primitive appearance of cells derived from the leukemic clone in most patients with acute myeloid leukemia (AML), there is considerable heterogeneity among leukemic blasts, particularly with respect to their capacity to proliferate and/or self renew. We have assessed whether these differences in proliferative potential are correlated with the phenotypic changes tha...
متن کاملSurvivin is highly expressed in CD34(+)38(-) leukemic stem/progenitor cells and predicts poor clinical outcomes in AML.
Survivin, a member of the inhibitors of apoptosis protein family, plays important roles in cell proliferation and survival and is highly expressed in various malignancies, including leukemias. To better understand its role in acute myeloid leukemia (AML), we profiled survivin expression in samples obtained from 511 newly diagnosed AML patients and in CD34(+)38(-) AML stem/progenitor cells using...
متن کاملSmall-molecule inhibition of BRD4 as a new potent approach to eliminate leukemic stem- and progenitor cells in acute myeloid leukemia (AML)
Acute myeloid leukemia (AML) is a life-threatening stem cell disease characterized by uncontrolled proliferation and accumulation of myeloblasts. Using an advanced RNAi screen-approach in an AML mouse model we have recently identified the epigenetic 'reader' BRD4 as a promising target in AML. In the current study, we asked whether inhibition of BRD4 by a small-molecule inhibitor, JQ1, leads to ...
متن کاملThe Difference in Initial Leukocyte Count, Bone Marrow Blast Cell Count and CD 34 Expression in Patients with Acute Myeloid Leukemia with and without NPM1 gene Mutation
Background: Mutation in NPM1 gene has been reported to be the most common genetic mutation in de novo acute myeloid leukemia (AML). AML with NPM1 gene mutation usually presents with higher initial leukocyte and blast cell counts and negative CD34 expression. We aimed to investigate the difference of initial leukocyte counts, bone marrow blast cell counts and expression of CD34 among patients wi...
متن کاملReciprocal Interactions of Leukemic Cells with Bone Marrow Stromal Cells Promote Enrichment of Leukemic Stell Cell Compartments in Response to Curcumin and Daunorubicin
A predominant challenge in developing curative leukemia therapy is interactions of leukemic cells with the bone marrow stromal microenvironment. We aimed to investigate the role of stromal cells, such as bone marrow mesenchymal stromal cells (BMSCs) and osteoblasts (OBs), in curcumin (CUR) and daunorubicin (DNR) induced apoptosis of acute myeloid leukemia (AML) cells. We used KG1 and U937 as le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 80 4 شماره
صفحات -
تاریخ انتشار 1992